FEATURES:

- Free-running CLKA and CLKB may be asynchronous or coincident (permits simultaneous reading and writing of data on a single clock edge)
- 64×36 storage capacity
- Synchronous data buffering from Port A to Port B
- Mailbox bypass register in each direction
- Programmable Almost-Full ($\overline{\mathrm{AF}}$) and Almost-Empty ($\overline{\mathrm{AE}}$) flags
- Microprocessor Interface Control Logic
- Full Flag ($\overline{F F}$) and Almost-Full ($\overline{\text { AF }}$) flags synchronized by CLKA
- Empty Flag ($\overline{E F}$) and Almost-Empty ($\overline{\mathrm{AE}}$) flags synchronized by CLKB
- Passive parity checking on each Port
- Parity Generation can be selected for each Port
- Supports clock frequencies up to 67 MHz
- Fast access times of 10 ns
- Available in 132-pin Plastic Quad Flatpack (PQF) or space-saving 120-pin Thin Quad Flatpack (PF)
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available

DESCRIPTION:

The IDT723611 is a monolithic, high-speed, low-power, CMOS Synchronous (clocked) FIFO memory which supports clock frequencies up to 67MHz and has read accesstimes as fastas 10ns. The 64×36 dual-portFIFO buffers data from Port A to PortB. The FIFO has flags to indicate empty and full conditions, andtwo programmableflags, Almost-Full ($\overline{\text { AF }}$) andAlmost-Empty $(\overline{A E})$, to indicate when a selected number of words is stored in memory. Communication between each portcantake placethroughtwo 36-bitmailbox registers. Each mailbox register has aflagto signal when new mail has been stored. Parity is checked passively on each port and may be ignored if not desired. Parity generation can be selected fordata read from each port. Two or more devices may be used in parallel to create wider data paths.

FUNCTIONAL BLOCK DIAGRAM

3024 drw 01

DESCRIPTION (Continued)

The IDT723611 is a synchronous (clocked) FIFO, meaning each port employs a synchronous interface. All datatransfers through a portare gated totheLOW-to-HIGHtransition of aportclockby enablesignals. The clocks for each port are independent of one another and can be asynchronous or coincident. The enables for each port are arranged to provide a simple
bidirectional interface between microprocessors and/or buses with synchronous control.

The Full Flag ($\overline{\mathrm{FF}}$) and Almost-Full ($\overline{\mathrm{AF}}$) flag of the FIFO are two-stage synchronized to the portclock that writes data into its array (CLKA). The Empty Flag($\overline{\mathrm{EF}}$) and Almost-Empty ($\overline{\mathrm{AE}}$) flag of the FIFO are two-stage synchronized to the port clock that reads data from its array.

The IDT723611 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

PIN CONFIGURATION

NOTE:

1. $\mathrm{NC}=\mathrm{No}$ internal connection

PIN CONFIGURATION (Continued)

PQFP (PQ132-1, order code: PQF) TOP VIEW
*
Electrical pin 1 in center of beveled edge. Pin 1 identifier in corner.

PIN DESCRIPTION

Symbol	Name	I/O	
A0-A35	Port-AData	I/O	36-bitbidirectional dataportfor side A.
$\overline{\text { AE }}$	Almost-Empty Flag	O	Programmable Almost-Empty flag synchronizedto CLKB. Itis LOW whenthe number of words in the FIFO is less than or equal tothe value in the offset register, X.
$\overline{\text { AF }}$	Almost-Full Flag	O	Programmable Almost-Full flag synchronized to CLKKA. Itis LOW when the number of empty locations in the FIFO is less than or equal to the value in the Offset register, X.
BO-B35	Port-BData.	I/O	36-bitbidirectional datap portforside B.

PIN DESCRIPTION (Continued)

Symbol	Name	1/0	Description
PEFB	Port-B Parity Error Flag	$\begin{array}{\|c} \hline 0 \\ \text { (Port B) } \end{array}$	When any byte applied to terminals BO -B35 fails parity, $\overline{\text { PEFB }}$ is LOW. Bytes are organized as $\mathrm{B} 0-\mathrm{B} 8, \mathrm{~B} 9-\mathrm{B} 17, \mathrm{~B} 18-\mathrm{B} 26, \mathrm{~B} 27-\mathrm{B} 35$, with the most significant bit of each byte serving as the parity bit. The type of parity checked is determined by the state of the ODD/EVEN input. The parity trees used to check the B0-B35 inputs are shared by the mail1 register to generate parity if parity generation is selected by PGB. Therefore, if a maill read with parity generation is setup by having CSB LOW, ENB HIGH, W/RB LOW, MBB HIGH, and PGB HIGH, the PEFEB flag is forced HIGH regardless of the state of the $\mathrm{BO} O$-B35 inputs
PGA	Port-A Parity Generation	I	Parity is generated for mail2 register reads from port A when PGA is HIGH. The type of parity generated is selected by the state of the ODD/EVENinput. Bytes are organized as A0-A8, A9-A17, A18-A26, and A27-A35. The generated parity bits are output in the most significantbitofeach byte.
PGB	Port-B Parity Generation	1	Parity is generated for data reads from port B when PGB is HIGH. The type of parity generated is selected by the state of the ODD/EVEN input. Bytes are organized as BO -B8, B9-B17, B18-B26, and B27-B35. The generated parity bits are output in the most significant bit of each byte.
RST	Reset	1	To resetthe device, four LOW-to-HIGH transitions of CLKA andfour LOW-to-HIGH transitions of CLKB must occur while $\overline{\text { RST }}$ is LOW. This sets the $\overline{\mathrm{AF}}$, $\overline{\mathrm{MBF1}}$, and $\overline{\mathrm{MBF} 2}$ flags HIGH and the $\overline{\mathrm{EF}}, \overline{\mathrm{AE}}$, and $\overline{\mathrm{FF}}$ flags LOW. The LOW-to-HIGH transition of $\overline{\text { RST }}$ latches the status of the FS1 and FSO inputs to select Almost-Full and Almost-Empty flag offset.
W $\bar{R} A$	Port-AWrite/Read Select	1	A HIGH selects a write operation and a LOW selects a read operation on port A for a LOW-to-HIGH transition of CLKA. The AO-A35 outputs are in the high-impedance state whenW/RAis HIGH.
W $\bar{R} B$	Port-BWrite/Read Select	1	A HIGH selects a write operation and a LOW selects a read operation on port B for a LOW-to-HIGH transition of CLKB. The BO-B35 outputs are in the high-impedance state whenW/RB is HIGH.

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR

TEMPERATURE RANGE (Unless otherwise noted)(1)

Symbol	Rating	Commercial	Unit
VCC	Supply Voltage Range	-0.5 to 7	V
$\mathrm{VI}^{(2)}$	Input Voltage Range	-0.5 to $\mathrm{VCC}+0.5$	V
$\mathrm{Vo}^{(2)}$	Output Voltage Range	-0.5 to $\mathrm{VCC}+0.5$	V
IIK	Input Clamp Current, $(\mathrm{VI}<0$ or $\mathrm{VI}>\mathrm{VCC})$	± 20	mA
IOK	Output Clamp Current, (Vo $=<0$ or Vo $>\mathrm{VCC})$	± 50	mA
IOUT	Continuous Output Current, $(\mathrm{VO}=0$ to VCC$)$	± 50	mA
ICC	Continuous Current Through VCC or GND	± 500	mA
TSTG	Storage Temperature Range	-65 to 150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
VCC	Supply Voltage	4.5	5.5	V
VIH	High-Level InputVoltage	2	-	V
VIL	Low-Level Input Voltage	-	0.8	V
IOH	High-Level OutputCurrent	-	-4	mA
IOL	Low-Level OutputCurrent	-	8	mA
TA	Operating Free-AirTemperature	0	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE (Unless otherwise noted)

Parameter	Test Conditions				IDT723611 Commercial $t \mathrm{t}=15,20,30 \mathrm{~ns}$			Unit
					Min.	Typ. ${ }^{(1)}$	Max.	
Voh	$\mathrm{Vcc}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-4 \mathrm{~mA}$			2.4	-	-	V
VOL	$\mathrm{VCC}=4.5 \mathrm{~V}$,	$\mathrm{IOL}=8 \mathrm{~mA}$			-	-	0.5	V
ILI	$\mathrm{Vcc}=5.5 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{VcC}$ or			-	-	± 50	$\mu \mathrm{A}$
ILO	$\mathrm{VCC}=5.5 \mathrm{~V}$,	$\mathrm{Vo}=\mathrm{Vcc}$			-	-	± 50	$\mu \mathrm{A}$
ICC ${ }^{(2)}$	$\mathrm{VCC}=5.5 \mathrm{~V}$,	$10=0 \mathrm{~mA}$,	$\mathrm{VI}=\mathrm{Vcc}$ or GND	OutputsHIGH	-	-	60	mA
				OutputsLOW	-	-	130	
				OutputsDisabled	-	-	60	
CIN	$V \mathrm{l}=0$,	$\mathrm{f}=1 \mathrm{MHz}$			-	4	-	pF
COUT	$\mathrm{V} 0=0$,	$\mathrm{f}=1 \mathrm{MHZ}$			-	8	-	pF

NOTES:

1. All typical values are at $\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. For additional Icc information, see the following page.

Figure 1. Typical Characteristics: Supply Current vs Clock Frequency

CALCULATING POWER DISSIPATION

The ICC(f) data for the graph was taken while simultaneously reading and writing the FIFO on the IDT723611 with CLKA and CLKB operating at frequency fs. All data inputs and data outputs change state during each clock cycle to consume the highest supply current. Data outputs were disconnected to normalize the graph to a zero-capacitance load. Once the capacitance load per data-output channel is known, the power dissipation can be calculated with the equation below.

With ICC(f) taken from Figure 1, the maximum power dissipation (PT) of the IDT723611 may be calculated by:

$$
\left.\mathrm{PT}=\operatorname{VCC} x \operatorname{ICC}(f)+\Sigma(\mathrm{CL} x \operatorname{VoH}-\operatorname{VoL})^{2} X f o\right)
$$

where:

CL	$=$	output capacitance load
fo	$=$	switching frequency of an output
VOH	$=$	output high-level voltage
VOL	$=$	output low-level voltage

When no read or writes are occurring on this device, the power dissipated by a single clock (CLKA or CLKB) input running at frequency fs is calculated by:
$\mathrm{PT}=\mathrm{Vcc} x$ fs $\times 0.290 \mathrm{~mA} / \mathrm{MHz}$

TIMING REQUIREMENTS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURES

Symbol	Parameter	IDT723611L15		IDT723611L20		IDT723611L30		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
fs	Clock Frequency, CLKA or CLKB	-	66.7	-	50	-	33.4	MHz
tCLK	Clock Cycle Time, CLKA or CLKB	15	-	20	-	30	-	MHz
tCLKH	Pulse Duration, CLKA or CLKB HIGH	6	-	8	-	12	-	ns
tCLKL	Pulse Duration, CLKA or CLKB LOW	6	-	8	-	12	-	ns
tDS	Setup Time, A0-A35 before CLKA \uparrow and B0-B35 beforeCLKB \uparrow	4	-	5	-	6	-	ns
tENS1	$\overline{\mathrm{CSA}}, \mathrm{W} / \overline{\mathrm{RA}}$, before CLKA \uparrow; $\overline{\mathrm{CSB}}, \mathrm{W} / \overline{\mathrm{R} B}$ before CLKB \uparrow	6	-	6	-	7	-	ns
tens2	ENA before CLKA \uparrow; ENB before CLKB \uparrow	4	-	5	-	6	-	ns
tens3	MBA beforeCLKA \uparrow; $\overline{E N B}$ beforeCLKB \uparrow	4	-	5	-	6	-	ns
tPGS	Setup Time, ODD/EVEN and PGB before CLKB $\uparrow^{(1)}$	4	-	5	-	6	-	ns
tRSTS	Setup Time, $\overline{\text { RSTLOW }}$ before CLKA \uparrow or CLKB ${ }^{(2)}$	5	-	6	-	7	-	ns
tFSS	Setup Time, FS0 and FS1 before $\overline{\text { RST }}$ HIGH	5	-	6	-	7	-	ns
DH	Hold Time, A0-A35 after CLKA \uparrow and B0-B35 afterCLKB \uparrow	1	-	1	-	1	-	ns
teNH1	$\overline{\mathrm{CSA}}, \mathrm{W} / \overline{\mathrm{R}}$ a afterCLKA \uparrow; $\overline{\mathrm{CSB}}, \mathrm{W} / \overline{\mathrm{R} B}$ afterCLKB \uparrow	1	-	1	-	1	-	ns
tenH2	ENA afterCLKA \uparrow; ENB afterCLKB \uparrow	1		1		1		ns
tenH3	MBA afterCLKA \uparrow; MBB afterCLKB \uparrow	1		1		1		ns
tPGH	Hold TIme, ODD/EVEN and PGB after CLKB $\uparrow^{(1)}$	0	-	0	-	0	-	ns
tRSTH	Hold Time, $\overline{\mathrm{RST}} \mathrm{LOW}$ afterCLKA \uparrow or CLKB $\uparrow^{(2)}$	6	-	6	-	7	-	ns
tFSH	Hold Time, FS0 and FS1 after $\overline{\text { RST }}$ HIGH	4	-	4	-	4	-	ns
tSKEW1 ${ }^{(3)}$	Skew Time, between CLKA \uparrow and CLKB \uparrow for $\overline{E F}, \overline{F F}$	8	-	8	-	10	-	ns
tSKEW2 ${ }^{(3)}$	Skew Time, between CLKA \uparrow and CLKB \uparrow for $\overline{\mathrm{AE}}, \overline{\mathrm{AF}}$	14	-	16	-	20	-	ns

NOTES:

1. Only applies for a rising edge of CLKB that does a FIFO read.
2. Requirement to count the clock edge as one of at least four needed to reset a FIFO.
3. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationship between CLKA cycle and CLKB cycle.

SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE, CL = 30 PF

Symbol	Parameter	IDT723611L15		IDT723611L20		IDT723611L30		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
fs	Clock Frequency, CLKA or CLKB	-	66.7	-	50	-	33.4	MHz
tA	Access Time, CLKB \uparrow to B0-B35	2	10	2	12	2	15	ns
tWFF	Propagation Delay Time, CLKA \uparrow to $\overline{F F}$	2	10	2	12	2	15	ns
tREF	Propagation Delay Time, CLKB \uparrow to $\overline{\mathrm{EF}}$	2	10	2	12	2	15	ns
tPAE	Propagation Delay Time, CLKB \uparrow to $\overline{A E}$	2	10	2	12	2	15	ns
tPAF	Propagation Delay Time, CLKA个 to $\overline{\mathrm{AF}}$	2	10	2	12	2	15	ns
tPMF	Propagation Delay Time, CLKA \uparrow to $\overline{\text { MBF1 }}$ LOW or $\overline{\text { MBF2 }} \mathrm{HIGH}$ and CLKB \uparrow to $\overline{\text { MBF2 }}$ LOW or MBF1 HIGH	1	9	1	12	1	15	ns
tPMR	Propagation Delay Time, CLKA \uparrow to B0-B35 ${ }^{(1)}$ and CLKB \uparrow to AO-A35 ${ }^{(2)}$	3	12	3	14	3	16	ns
tmDV	Propagation Delay Time, MBB to B0-B35 Valid	1	11	1	11.5	1	12	ns
tPDPE	Propagation Delay Time, A0-A35 Valid to $\overline{\text { PEFA }}$ Valid; B0-B35 Valid to PEFB Valid	3	12	3	13	3	14	ns
tPOPE	Propagation Delay Time, ODD/EVENto $\overline{\text { PEFA }}$ and PEFB	3	11	3	12	3	14	ns
tPOPB ${ }^{(3)}$	Propagation Delay Time, ODD/EVENto Parity Bits (A8, A17, A26, A35) and (B8, B17, B26, B35)	2	12	2	13	2	15	ns
tPEPE	Propagation Delay Time, $\overline{\mathrm{CSA}}, \mathrm{ENA}, \mathrm{W} / \overline{\mathrm{R}} \mathrm{A}$, MBA, or PGA to $\overline{\mathrm{PEFA}} ; \overline{\mathrm{CSB}}, \mathrm{ENB}, \mathrm{W} / \overline{\mathrm{RB}}$, MBB, or PGB to $\overline{\text { PEFB }}$	1	12	1	13	1	15	ns
tPEPB ${ }^{(3)}$	Propagation Delay Time, $\overline{\mathrm{CSA}}, \mathrm{ENA}$ W $\bar{R} A$, MBA, or PGA to Parity Bits (A8, A17, A26, A35); $\overline{C S B}, ~ E N B, W / \overline{R B}, M B B$, or PGB to Parity Bits (B8, B17, B26, B35)	3	14	3	15	3	16	ns
tRSF	Propagation Delay Time, $\overline{\text { RST }}$ to $\overline{\mathrm{AE}}$ LOW and ($\overline{\mathrm{AF}}, \overline{\mathrm{MBF}}, \overline{\mathrm{MBF}}$) HIGH	1	15	1	20	1	30	ns
ten	Enable Time, $\overline{\text { CSAA }}$ and W/ $\bar{R} A$ LOW to A0-A35 Active and $\overline{C S B}$ LOW and $\bar{W} / R B$ HIGH to B0-B35 Active	2	10	2	12	2	14	ns
tDIS	Disable Time, C̄SA or W/ $\overline{\mathrm{R} A}$ HIGH to A0-A35 at high impedance and $\overline{\mathrm{CSB}} \mathrm{HIGH}$ or $\overline{\mathrm{W}} / \mathrm{RB}$ LOW to B0-B35 athighimpedance	1	9	1	10	1	11	ns

NOTES:

1. Writing data to the mail1 register when the BO-B35 outputs are active and MBB is HIGH.
2. Writing data to the mail2 register when the AO-A35 outputs are active and MBA is HIGH.
3. Only applies when reading data from a mail register.

SIGNAL DESCRIPTION

RESET ($\overline{\text { RST }}$)

The IDT723611 is reset by taking the Reset $(\overline{\operatorname{RST}})$ input LOW for a least fourport-A clock (CLKA) and four port-B clock (CLKB) LOW-to-HIGH transitions. The resetinputcan switch asynchronously tothe clocks. Adevice reset initializesthe internal readand write pointers ofthe FIFO andforcesthe Full Flag (原) LOW, the Empty Flag(EF) LOW, the Almost-Emptyflag ($\overline{\text { AE }})$ LOW, and the Almost-Fullflag ($\overline{\mathrm{AF}}$) HIGH . A resetalsoforcesthe MailboxFlags ($\overline{\text { MBF1, }}, \overline{\mathrm{MBF} 2}$) HIGH. Afterareset, FFis setHIGH aftertwoLOW-to-HIGHtransitions of CLKA. The device must be resetafter power up before data is written to its memory.

ALOW-to-HIGHtransition on the $\overline{\text { RST inputloads the AImost-Full and AImost- }}$ Empty Offsetregister (X) with the value selected by the Flag Select (FSO, FS1) inputs. The values that can be loaded into the register are shown in Table 1.

Almost-Full and Almost-Empty Flag Offset Register (X)	FS1	FS0	$\overline{\text { RST }}$
16	H	H	\uparrow
12	H	L	\uparrow
8	L	H	\uparrow
4	L	L	\uparrow

Table 1. Flag Programming

FIFO WRITE/READ OPERATION

The state ofthe port-Adata(AO-A35) outputs is controlled by the port-AChip Select ($\overline{\mathrm{CSA}}$) and the port-A Write/Read select (W/ $\overline{\mathrm{R} A})$. The A0-A35 outputs are in the high-impedance state when either $\overline{C S A}$ or W/ $\bar{R} A$ is HIGH. The AOA35 outputs are active whenboth $\overline{C S A}$ and W/FA Are LOW. Datais loaded into the FIFO from the AO-A35 inputs on a LOW-to-HIGHtransition of CLKA when CSA is LOW, W/RA is HIGH, ENA is HIGH, MBA is LOW, and FF is HIGH (see Table 2).

The port-B control signals are identical to those of port A . The state of the port-Bdata (BO-B35) outputs is controlled by the port-BChipSelect ($\overline{\mathrm{CSB}}$) and the port-B Write/Read select (W/XB). The B0-B35 outputs are in the highimpedance state when either $\overline{C S B}$ orW/RB is HIGH . The BO-B35 outputs are active when both $\overline{C S B}$ and $W / \bar{R} B$ are LOW. Data is read from the FIFO to the BO-B35 outputs by aLOW-to-HIGH transition of CLKB whenCSBis LOW,W/ $\overline{R B}$ is LOW, ENB is HIGH, MBB is LOW, and EF is HIGH (see Table 3).

The setup and hold-time constraints to the port clocks for the port Chip
 write and read operations and are not related to HIGH-impedance control of the data outputs. If a port enable is LOW during a clock cycle, the port's Chip SelectandWrite/Read selectcan change states duringthe setup and hold-time window of the cycle.

SYNCHRONIZED FIFO FLAGS

Each FIFO flagis synchronizedto its portclockthroughtwoflip-flopstages. This is done to improve the flags' reliability by reducing the probability of mestastable events ontheir outputs when CLKA and CLKB operate asynchro-

$\overline{\text { CSA }}$	W $\bar{R} A$	ENA	MBA	CLKA	A0-A35 Outputs	Port Functions
H	X	X	X	X	InHigh-ImpedanceState	None
L	H	L	X	X	InHigh-ImpedanceState	None
L	H	H	L	\uparrow	InHigh-ImpedanceState	FIFOWrite
L	H	H	H	\uparrow	InHigh-Impedance State	Mail1 Write
L	L	L	L	X	Active,Mail2Register	None
L	L	H	L	\uparrow	Active,Mail2Register	None
L	L	L	H	X	Active,Mail2Register	None
L	L	H	H	\uparrow	Active,Mail2Register	Mail2 Read (set MBF2HIGH)

Table 2. Port-A Enable Function Table

$\overline{\text { CSB }}$	W/RB	ENB	MBB	CLKB	B0-B35 Outputs	Port Functions
H	X	X	X	X	InHigh-Impedance State	None
L	H	L	X	X	InHigh-ImpedanceState	None
L	H	H	L	\uparrow	InHigh-ImpedanceState	None
L	H	H	H	\uparrow	InHigh-Impedance State	Mail2Write
L	L	L	L	X	Active,FIFO Output Register	None
L	L	H	L	\uparrow	Active,FIFO Output Register	FIFO Read
L	L	L	H	X	Active,Mail1 Register	None
L	L	H	H	\uparrow	Active,Mail1 Register	Mail1 Read (set MBF1 HIGH)

Table 3. Port-B Enable Function Table
nously to one another. $\overline{F F}$ and $\overline{\mathrm{AF}}$ are synchronized to CLKA. $\overline{\mathrm{EF}}$ and $\overline{\mathrm{AE}}$ are synchronized to CLKB. Table 4shows the relationship to the flags to the FIFO.

EMPTY FLAG(EF)

The FIFO Empty Flagis synchronizedtothe portclockthatreads datafrom itsarray (CLKB). Whenthe EF is HIGH, new data canbe readtothe FIFO output register. When the EF is LOW, the FIFO is empty and attempted FIFO reads are ignored.

The FIFO read pointer is incremented each time a new word is clocked to its output register. The state machine that controls an EF monitors a write pointer and read pointer comparator that indicates when the FIFO SRAM status is empty, empty +1 , orempty +2 . A word writtentothe FIFO can be read to the FIFO output register in a minimum of three port-B clock (CLKB) cycles. Therefore, an EF is LOW if a word in memory is the next data to be sentto the FIFO outputregister and two CLKB cycles have notelapsed since the time the word was written. The EF ofthe FIFO is setHIGH by the second LOW-to-HIGH transition of CLKB, andthenewdata word canbereadtothe FIFO outputregister inthefollowing cycle.

A LOW-to-HIGH transition on CLKB begins the first synchronized cycle of a write if the clock transition occurs at time tSKEW1 or greater after the write. Otherwise, the subsequent CLKB cycle can be the first synchronization cycle (see Figure 5).

FULL FLAG ($\overline{F F}$)

The FIFO Full Flag is synchronized to the port clock that writes data to its array (CLKA). When the FF is HIGH, an SRAM location is free to receive new data. No memory locations are free when the $\overline{F F}$ is LOW and attempted writes to the FIFO are ignored.

Each time a word is writtentothe FIFO, its write pointeris incremented. The state machine that controls the FF monitors a write pointer and read pointer comparatorthatindicateswhenthe FIFOSRAMstatusisfull,full-1, orfull-2. From the time a word is read from the FIFO, its previous memory location is ready to be written in a minimum ofthree port-A clock cycles. Therefore, aFFis LOW ifless thantwo CLKAcycles have elapsedsincethenextmemory write location has been read. The second LOW-to-HIGH transition on CLKA after the read sets the $\overline{F F}$ HIGH and data can be written in the following clock cycle.

ALOW-to-HIGHtransition onCLKA begins the firstsynchronization cycle of a read ifthe clocktransition occurs attime tSKEW1 orgreater after the read. Otherwise, the subsequentclockcycle canbethefirstsynchronization cycle (see Figure 6).

Number of Words in the FIFO	Synchronized to CLB		Synchronized to CLKA	
	$\overline{\mathrm{F}}$	$\overline{\mathrm{AE}}$	$\overline{\mathrm{AF}}$	$\overline{\mathrm{FF}}$
	L	L	H	H
1 to X	H	L	H	H
$(\mathrm{X}+1)$ to $[64-(\mathrm{X}+1)]$	H	H	H	H
$(64-\mathrm{X})$ to 63	H	H	L	H
64	H	H	L	L

Table 4. FIFO Flag Operation
NOTE:

1. X is the value in the Almost-Empty flag and Almost-Full flag register.

ALMOST-EMPTY FLAG ($\overline{A E}$)

The FIFO AImost-Empty flagissynchronizedtotheportclockthatreadsdata from its array (CLKB). The state machine that controls the $\overline{\mathrm{EEf}}$ lag monitors a write pointer and read pointer comparator thatindicates whenthe FIFOSRAM statusisalmost-empty, almost-empty+1, oralmost-empty+2. Thealmost-empty state is defined by the value ofthe Almost-Full and Almost-Empty Offsetregister (X). This register is loaded with one offour presetvalues during a device reset (see resetabove). The $\bar{E} \bar{E}$ flagis LOW whenthe FIFO contains X orless words in memory and is HIGH when the FIFO contains ($\mathrm{X}+1$) or more words.

Two LOW-to-HIGH transitions on the port-B clock (CLKB) are required after a FIFO write for the $\overline{\mathrm{AE}}$ flag to reflect the new level of fill. Therefore, the $\overline{\text { AE flag of a FIFO containing (} \mathrm{X}+1 \text {) or more words remains LOW if two CLKB }}$ cycles have notelapsed since the write thatililed the memory to the $(X+1)$ level. The \bar{E} flagis set HIGH by the second CLKBLOW-to-HIGHtransition after the FIFO write that fills memory to the $(X+1)$ level. A LOW-to-HIGH transition on CLKB begins the firstsynchronization cycle ifitoccurs attime tSKEW2 orgreater afterthe writethatillsthe FIFOto $(X+1)$ words. Otherwise, the subsequentCLKB cycle can be the first synchronization cycle (see Figure 7).

ALMOST-FULL FLAG ($\overline{\text { FF }})$

The FIFO Almost-Full flag is synchronized to the port clock that writes data to its array (CLKA). The state machine that controls an $\overline{\mathrm{F}}$ flag monitors a write pointer and read pointer comparator thatindicates whenthe FIFOSRAM statusisalmost-full, almost-full-1, oralmost-full-2. Thealmost-full stateisdefined bythe value ofthe Almost-Full andAlmost-Empty Offsetregister (X). This register is loaded with one offour presetvalues during a device reset(see resetabove). The $\overline{\text { FF flag is LOW when the FIFO contains (} 64-\mathrm{X} \text {) or more words in memory }}$ and is HIGH when the FIFO contains $[64-(\mathrm{X}+1)]$ or less words.

Two LOW-to-HIGH transitions on the port-A clock (CLKA) are required after a FIFO read for the $\overline{\mathrm{AF}}$ flag to reflect the new level of fill. Therefore, the $\overline{\text { AF flag of aFIFO containing }[64-(X+1)] \text { orless words remains LOWiftwo CLKA }}$ cycles have not elapsed since the read that reduced the number of words in memory to $[64-(X+1)]$. The $\overline{A F}$ flag is setHIGH by the second CLKALOW-toHIGHtransition afterthe FIFO readthatreduces thenumberofwords inmemory to [64-(X+1)]. ALOW-to-HIGH transition onCLKA begins the first synchronization cycleifitoccurs attimetSKEW2 orgreater after the read thatreduces the number of words in memory to [64- $(\mathrm{X}+1)$]. Otherwise, the subsequent CLKA cycle can be the first synchronization cycle (see Figure 8).

MAILBOX REGISTERS

Two 36-bitbypass registers are onthe IDT723611 to pass command and control information between portA and portB. The Mailboxselect(MBA,MBB) inputs choose between a mail register and a FIFO for a port data transfer operation. ALOW-to-HIGHtransition on CLKA writes AO-A35datatothe mail1 registerwhen port-A write is selected by $\overline{C S A}, W / \bar{R} A$, and ENA with MBAHIGH. ALOW-to-HIGH transition on CLKB writes B0-B35 data to the mail2 register when port-B write is selected by $\overline{C S B}, W / \overline{R B}$, and $E N B$ with MBB HIGH. Writing data to a mail register sets its corresponding flag ($\overline{\text { MBF1 }}$ or $\overline{\text { MBF2 }}$) LOW. Attempted writes to a mail register are ignored while its mail flagis LOW.

When the port-B data (B0-B35) outputs are active, the data on the bus comes from the FIFO output register when the port-B Mailbox select (MBB) inputisLOW andfrom the mail registerwhenMBBis HIGH. Mail2dataisalways present on the port-A data (A0-A35) outputs when they are active. The Mail1 RegisterFlag (MBF1) is setHIGH byaLOW-to-HIGH transition onCLKB when a port-B read is selected by $\overline{C S B}, \mathrm{~W} / \overline{\mathrm{RB}}$, and ENB with MBB HIGH. The Mail2 RegisterFlag(MBF2) is setHIGH byaLOW-to-HIGH transition onCLKA when a port-A read is selected by $\overline{C S A}, W / \bar{R} A$, and $E N A$ with MBA HIGH. The data
in a mail register remains intactafteritis read and changes only when new data is written to the register.

PARITY CHECKING

The port-A (A0-A35) inputs and port-B (B0-B35) inputs each have four parity trees to check the parity of incoming (or outgoing) data. A parity failure on one or more bytes of the input bus is reported by a LOW level on the port Parity ErrorFlag ($\overline{\text { EFFA }}, \overline{\text { PEFB }}$). Odd or even parity checking canbe selected, and the Parity Error Flags can be ignored if this feature is not desired.

Parity status ischecked on each inputbus accordingtothe level oftheOdd/ Even parity (ODD/EVEN) select input. A parity error on one or more bytes of a port is reported by a LOW level on the corresponding port Parity Error Flag ($\overline{\text { PEFA, }}, \overline{\text { PEFB }}$) output. Port-A bytes are arranged as A0-A8, A9-A17, A18-A26, and $\mathrm{A} 27-\mathrm{A} 35$, and port-B bytes are arranged as $\mathrm{BO}-\mathrm{B} 8, \mathrm{~B} 9-\mathrm{B} 17, \mathrm{~B} 18-\mathrm{B} 26$, and B27-B35. When Odd/Even parity is selected, a port Parity Error Flag ($\overline{\text { PEFA, }}, \overline{\text { PEFB }}$) is LOW if any byte on the porthas an odd/even number of LOW levels appliedto its bits.

The four parity trees used to check the A0-A35 inputs are shared by the mail2 registerwhen parity generation is selected forport-A reads (PGA=HIGH). When port-A readfrom the mail2 register with parity generation is selected with CSA LOW, ENA HIGH, W/RA LOW, MBA HIGH, and PGA HIGH, the port-A Parity Error Flag ($\overline{\mathrm{PEFA}}$) is held HIGH regardless of the levels applied to the A0-A35 inputs. Likewise, the parity trees used to check the B0-B35 inputs are shared by the mail1 register when parity generation is selected for port-B reads (PGB=HIGH). When aport-B readfrom the mail1 registerwith parity generation is selected with $\overline{C S B} L O W, E N B H I G H, W / \bar{R} B L O W, M B B H I G H, ~ a n d P G B H I G H, ~$ the port-BParity ErrorFlag ($\overline{\text { PEFB }}$) is held HIGH regardless of the levels applied to the B0-B35 inputs.

PARITY GENERATION

AHIGH level on the port-A Parity Generate select(PGA) or port-B Parity Generate select(PGB) enables the IDT723611 to generate parity bits for port reads from a FIFO or mailbox register. Port-A bytes are arranged as A0-A8, A9-A17, A18-A26, and A27-A35, withthe mostsignificantbit of eachbyte used as the parity bit. Port-B bytes are arranged as B0-B8, B9-B17, B18-B26, and B27-B35, with the mostsignificantbit of each byte used as the parity bit. A write to a FIFO or mail register stores the levels applied to all thirty-six inputs regardless of the state of the Parity Generate select(PGA, PGB) inputs. When data is read from a port with parity generation selected, the lower eightbits of each byte are used to generate a parity bit according to the level on the ODD/ $\overline{\mathrm{EV} E N}$ select. The generated parity bits are substituted for the levels originally written to the most significant bits of each byte as the word is read to the data outputs.

Parity bits for FIFO data are generated after the data is read from SRAM and before the data is written to the output register. Therefore, the port-BParity Generate select(PGB) and ODD/EVEN have setup and holdtime constraints to the port-B clock (CLKB) for a rising edge of CLKB used to read a new word to the FIFO output register.

The circuit used to generate parity for the mail1 data is shared by the port-B bus ($\mathrm{B} 0-\mathrm{B} 35$) to check parity and the circuit used to generate parity for the mail2 data is shared by the port-A bus (A0-A35) to check parity. The shared parity trees of a port are used to generate parity bits for the data in a mail registerwhenthe portWrite/Readselect(W/RA, W/RB) inputis LOW, the port Mail select (MBA, MBB) input is HIGH, Chip Select ($\overline{\mathrm{CSA}}, \overline{\mathrm{CSB}})$ is LOW, Enable (ENA, ENB) is HIGH, and the portParity Generate select(PGA, PGB) is HIGH. Generating parity for mail register data does not change the contents of the register.

Figure 2. Device Reset Loading the X Register with the Value of Eight

Figure 3. FIFO Write Cycle Timing

Figure 4. FIFO Read Cycle Timing

NOTE:

1. tsKEw1 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{E F}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tskew1, then the transition of $\overline{\mathrm{EF}}$ HIGH may occur one CLKB cycle later than shown.

Figure 5. $\overline{\mathrm{EF}}$ Flag Timing and First Data Read when the FIFO is Empty

Figure 6. $\overline{\text { FF }}$ Flag Timing and First Available Write when the FIFO is Full

NOTES:

1. tsKEw2 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{\mathrm{AE}}$ to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tsKEW2, then $\overline{\mathrm{AE}}$ may transition HIGH one CLKB cycle later than shown.
2. FIFO write ($\overline{\mathrm{CSA}}=L, W / \bar{R} A=H, M B A=L)$, FIFO read $(\overline{\mathrm{CSB}}=L, W / \bar{R} B=L, M B B=L)$.

Figure 7. Timing for $\overline{\mathrm{AE}}$ when the FIFO is Almost-Empty

NOTES:

1. tsKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for $\overline{\mathrm{AF}}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tsKewz, then $\overline{\mathrm{AF}}$ may transition HIGH one CLKB cycle later than shown.
2. FIFO write $(\overline{C S A}=L, W / \bar{R} A=H, M B A=L)$, FIFO read $(\overline{C S B}=L, W / \bar{R} B=L, M B B=L)$.

Figure 8. Timing for $\overline{\mathrm{AF}}$ when the FIFO is Almost-Full

3024 drw 12
NOTE:

1. Port-B parity generation off ($\mathrm{PGB}=\mathrm{L}$)

Figure 9. Timing for Mail1 Register and $\overline{\text { MBF1 }}$ Flag

NOTE:

1. Port-A parity generation off $(P G A=L)$

Figure 10. Timing for Mail2 Register and MBF2 Flag

1. $\overline{C S A}=L$ and $E N A=H$.

Figure 11. ODD/EVEN, W/RA, MBA, and PGA to PEFA Timing

NOTE:

1. $\overline{C S B}=L$ and $E N B=H$.

Figure 12. ODD/EVEN, W/RB, MBB, and PGB to $\overline{\text { PEFB }}$ Timing

NOTE:

1. $E N A=H$.

Figure 13. Parity Generation Timing when reading from the Mail2 Register

NOTE:

1. $\mathrm{ENB}=\mathrm{H}$.

Figure 14. Parity Generation Timing when reading from the Mail1 Register

PARAMETER MEASUREMENT INFORMATION

NOTE:

1. Includes probe and jig capacitance.

Figure 16. Load Circuit and Voltage Waveforms

ORDERING INFORMATION

NOTE:

1. Industrial temperature range is available by special order
for SALES:
800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*
for TECH SUPPORT:
408-330-1753
e-mail:FIFOhelp@idt.com
PF Pkg: www.idt.com/docs/PSC4036.pdf PQF Pkg: www.idt.com/docs/PSC4021.pdf
